Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.

نویسندگان

  • Yong Jin Jeong
  • Dong-Jin Yun
  • Jaeyoung Jang
  • Seonuk Park
  • Tae Kyu An
  • Lae Ho Kim
  • Se Hyun Kim
  • Chan Eon Park
چکیده

Solution-processed organic field effect transistors (OFETs), which are amenable to facile large-area processing methods, have generated significant interest as key elements for use in all-organic electronic applications aimed at realizing low-cost, lightweight, and flexible devices. The low performance levels of n-type solution-processed bottom-contact OFETs unfortunately continue to pose a barrier to their commercialization. In this study, we introduced a combination of CVD-grown graphene source/drain (S/D) electrodes and fullerene (C60) in a solution-processable n-type semiconductor toward the fabrication of n-type bottom-contact OFETs. The C60 coating in the channel region was achieved by modifying the surface of the oxide gate dielectric layer with a phenyl group-terminated self-assembled monolayer (SAM). The graphene and phenyl group in the SAMs induced π-π interactions with C60, which facilitated the formation of a C60 coating. We also investigated the effects of thermal annealing on the reorganization properties and field-effect performances of the overlaying solution-processed C60 semiconductors. We found that thermal annealing of the C60 layer on the graphene surface improved the crystallinity of the face-centered cubic (fcc) phase structure, which improved the OFET performance and yielded mobilities of 0.055 cm(2) V(-1) s(-1). This approach enables the realization of solution-processed C60-based FETs using CVD-grown graphene S/D electrodes via inexpensive and solution-process techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors.

Graphene has shown great potential as an electrode material for organic electronic devices such as organic field-effect transistors (FETs) because of its high conductivity, thinness, and good compatibility with organic semiconductor materials. To achieve high performance in graphene-based organic FETs, favorable molecular orientation and good crystallinity of organic semiconductors on graphene ...

متن کامل

Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.

Solution-processed single-walled carbon nanotubes (SWNTs) offer many unique processing advantages over nanotubes grown by the chemical vapor deposition (CVD) method, including capabilities of separating the nanotubes by electronic type and depositing them onto various substrates in the form of ultradensely aligned arrays at low temperature. However, long-channel transistors that use solution-pr...

متن کامل

Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.

Field-effect transistors fabricated on graphene grown by chemical vapor deposition (CVD) often exhibit large hysteresis accompanied by low mobility, high positive backgate voltage corresponding to the minimum conductivity point (V(min)), and high intrinsic carrier concentration (n(0)). In this report, we show that the mobility reported to date for CVD graphene devices on SiO(2) is limited by tr...

متن کامل

Fabrication of SWCNT-Graphene Field-Effect Transistors

Graphene and single-walled carbon nanotube (SWCNT) have been widely studied because of their extraordinary electrical, thermal, mechanical, and optical properties. This paper describes a novel and flexible method to fabricate all-carbon field-effect transistors (FETs). The fabrication process begins with assembling graphene grown by chemical vapor deposition (CVD) on a silicon chip with SiO2 as...

متن کامل

Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs.

There are two current methods to process graphene electrodes over the large scale: graphitization of single crystal SiC [ 9 , 10 ] and chemical vapor deposition (CVD) on metal fi lms. [ 3 , 11 , 12 ] Specifi cally for electrodes, CVD-grown graphene has promise in producing electrodes because the fi lms have low resistance, high optical transmittance and fl exibility. [ 3 , 12 ] Several reports ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2015